Math 1A Midterm 1 Review Answers

Complete solutions are shown for all questions except those marked $\mathcal{*}$.
The missing work for those questions is strictly numeric or algebraic.
[1] (2) $\lim _{x \rightarrow 0} \frac{\sqrt{x+\sqrt{\cos x}}-1}{x}=\frac{1}{2}$
[2] $\frac{f(5)-f(1)}{5-1}=\frac{-25-(-1)}{5-1}=-6$ meters per second
[3]

[4] Since $-1 \leq \cos \frac{1}{x^{2}} \leq 1$ for all $x \neq 0$,
therefore $-x^{4} \leq x^{4} \cos \frac{1}{x^{2}} \leq x^{4}$ for all $x \neq 0$.
$\lim _{x \rightarrow 0}\left(-x^{4}\right)=\lim _{x \rightarrow 0} x^{4}=0$.
So, by the Squeeze Theorem, $\lim _{x \rightarrow 0} x^{4} \cos \frac{1}{x^{2}}=0$.
[5]
[a] $\quad \lim _{x \rightarrow-2}(2 x-3)=-7$
[b] $\quad \lim _{x \rightarrow-1^{-}}(2 x-3)=-5$ and $\lim _{x \rightarrow-1^{+}}\left(x^{2}-6\right)=-5$, so $\lim _{x \rightarrow-1} f(x)=-5$
[c] $\quad \lim _{x \rightarrow 2^{-}}\left(x^{2}-6\right)=-2$ and $\lim _{x \rightarrow 2^{+}}(4 x-6)=2$, so $\lim _{x \rightarrow 2} f(x)$ DNE
[6] Since $\lim _{x \rightarrow 2}(x-2)$ exists (equals 0),

$$
\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+a}-1}{x-2} \lim _{x \rightarrow 2}(x-2)=2 \lim _{x \rightarrow 2}(x-2)
$$

Since $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+a}-1}{x-2}$ and $\lim _{x \rightarrow 2}(x-2)$ both exist (given $\&$ above), $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+a}-1}{x-2}(x-2)=0$

$$
\lim _{x \rightarrow 2}\left(\sqrt{x^{2}+a}-1\right)=0
$$

Since $\lim _{x \rightarrow 2} 1$ exists (equals 1),
Since $\lim _{x \rightarrow 2}\left(\sqrt{x^{2}+a}-1\right)$ and $\lim _{x \rightarrow 2} 1$ both exist (above),

$$
\begin{aligned}
& \lim _{x \rightarrow 2}\left(\sqrt{x^{2}+a}-1\right)+\lim _{x \rightarrow 2} 1=0+\lim _{x \rightarrow 2} 1 \\
& \lim _{x \rightarrow 2}\left(\sqrt{x^{2}+a}-1+1\right)=1 \\
& \lim _{x \rightarrow 2} \sqrt{x^{2}+a}=1 \\
& \left(\lim _{x \rightarrow 2} \sqrt{x^{2}+a}\right)^{2}=1^{2} \\
& \lim _{x \rightarrow 2} \sqrt{x^{2}+a} \sqrt{x^{2}+a}=1 \\
& \lim _{x \rightarrow 2}\left(x^{2}+a\right)=1 \\
& 4+a=1 \\
& a=-3
\end{aligned}
$$

Since $\lim _{x \rightarrow 2} \sqrt{x^{2}+a}$ exists (above),

$$
\begin{equation*}
\lim _{x \rightarrow 2} \frac{x^{2} g(x)}{1+f(x)}=\frac{\lim _{x \rightarrow 2} x^{2} g(x)}{\lim _{x \rightarrow 2}(1+f(x))}=\frac{\lim _{x \rightarrow 2} x \cdot \lim _{x \rightarrow 2} x \cdot \lim _{x \rightarrow 2} g(x)}{\lim _{x \rightarrow 2} 1+\lim _{x \rightarrow 2} f(x)}=\frac{2 \cdot 2 \cdot 4}{1+(-3)}=-8 \tag{7}
\end{equation*}
$$

discontinuities where $x^{2}-9=0$, ie. at $x=-3$ and $x=3$

$$
\lim _{x \rightarrow-3^{-}} f(x)=-\infty\left(\frac{-1}{0^{+}}\right) \quad \lim _{x \rightarrow-3^{+}} f(x)=\infty\left(\frac{-1}{0^{-}}\right) \quad \lim _{x \rightarrow 3^{-}} f(x)=-\infty \quad\left(\frac{5}{0^{-}}\right) \quad \lim _{x \rightarrow 3^{+}} f(x)=\infty \quad\left(\frac{5}{0^{+}}\right)
$$

[9] [a] Since $f(-1)$ DNE, there is no such a
[b] $\quad \lim _{x \rightarrow 2^{-}}(3-x)=1$ and $\lim _{x \rightarrow 2^{+}}(b x-1)=2 b-1$, so $\lim _{x \rightarrow 2} f(x)$ exists only if $2 b-1=1$ ie. $b=1$
\star It was not stated that you need to check that f is continuous at $X=2$ with this value of b, but it is strongly recommended, to be sure the answer isn't that there is no such b
[c] $\quad \lim _{x \rightarrow-1^{-}}(2 x+6)=4$ and $\lim _{x \rightarrow-1^{+}}(3-x)=4$, so $\lim _{x \rightarrow-1} f(x)$ exists and $\lim _{x \rightarrow-1} f(x)=4$ but $f(-1)$ DNE, so $x=-1$ is a removable discontinuity $\lim _{x \rightarrow 2^{-}}(3-x)=1$ and $\lim _{x \rightarrow 2^{+}}(3 x-1)=5$, so both one-sided limits exist but are not equal, so $x=2$ is a jump discontinuity
[10] Let $f(x)=\cos 2 x-x^{2}$.
Since $\cos 2 x$ (a continuous trigonometric function composed with a polynomial function)
and x^{2} (a polynomial function) are both continuous for all x,
so is their difference $f(x)=\cos 2 x-x^{2}$.
Since $f(\pi)=1-\pi^{2}<0<1=f(0)$,
by the Intermediate Value Theorem, there is a value c in the interval $(0, \pi)$ such that $f(c)=\cos 2 c-c^{2}=0$, ie. $\cos 2 c=c^{2}$. So the equation $\cos 2 x=x^{2}$ has a solution in the interval $[0, \pi]$.

$$
\begin{align*}
& 2 x-1=0 \Rightarrow x=\frac{1}{2} \text { and } \lim _{x \rightarrow \frac{1}{2}^{+}} \frac{\sqrt{4+9 x^{2}}}{2 x-1}=\infty\left(\frac{\frac{5}{2}}{0^{+}}\right) \tag{11}\\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{4+9 x^{2}}}{2 x-1}=\lim _{x \rightarrow-\infty} \frac{\sqrt{4+9 x^{2}}}{2 x-1} \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{4+9 x^{2}}}{2 x-1} \frac{\sqrt{\frac{1}{x^{2}}}}{\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{\frac{4}{x^{2}+9}}}{2-\frac{1}{x}}=\frac{-\sqrt{0+9}}{2-0}=-\frac{3}{2} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{4+9 x^{2}}}{2 x-1}=\lim _{x \rightarrow \infty} \frac{\sqrt{4+9 x^{2}}}{2 x-1} \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{4+9 x^{2}}}{2 x-1} \frac{\sqrt{\frac{1}{x^{2}}}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{4}{x^{2}+9}}}{2-\frac{1}{x}}=\frac{\sqrt{0+9}}{2-0}=\frac{3}{2} \\
& \text { Vertical asymptote: } \quad x=\frac{1}{2} \\
& \text { Horizontal asymptotes: } \quad y= \pm \frac{3}{2}
\end{align*}
$$

$$
\begin{align*}
f^{\prime}(-2) & =\lim _{b \rightarrow-2} \frac{f(b)-f(-2)}{b-(-2)}=\lim _{b \rightarrow-2} \frac{b^{3}-3 b+2}{b+2}=\lim _{b \rightarrow-2} \frac{(b+2)\left(x^{2}-2 b+1\right)}{b+2}=\lim _{b \rightarrow-2}\left(b^{2}-2 b+1\right)=9 \tag{12}\\
f^{\prime}(-2) & =\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h}=\lim _{x \rightarrow-2} \frac{(-2+h)^{3}-3(-2+h)+2}{h}=\lim _{x \rightarrow-2} \frac{-8+12 h-6 h^{2}+h^{3}+6-3 h+2}{h} \\
& =\lim _{x \rightarrow-2} \frac{9 h-6 h^{2}+h^{3}}{h}=\lim _{x \rightarrow-2}\left(9-6 h+h^{2}\right)=9
\end{align*}
$$

[a] $\quad f(x)=\cos \pi x, a=-1$
[b] $\quad f(x)=x^{2}-x, a=-2$
[14] © 1.5 feet per minute
[15] © $y+4=2(x-2)$

$$
\begin{equation*}
f^{\prime}(-2)<f^{\prime}(4)<0<f^{\prime}(2)<f^{\prime}(-4) \tag{16}
\end{equation*}
$$

[17] [a] If the refrigerator temperature is $4^{\circ} \mathrm{C}$, the food will defrost in 6 hours.
[b] If the refrigerator temperature is $4^{\circ} \mathrm{C}$, the food will defrost 1 hour sooner for each $1^{\circ} \mathrm{C}$ increase in the refrigerator's temperature.
[c] No. The defrost time should always decrease if the refrigerator temperature increases. The frozen food will always defrost faster in a warmer refrigerator.
[18]
(1) [a] $f^{\prime}(t)=\frac{1}{2(1-t)^{\frac{3}{2}}}$
[b] $\quad g^{\prime}(x)=\frac{8}{(2-x)^{2}}$
[19]
[a] $\quad \begin{aligned} & x=-3 \text { (discontinuous) } \\ & x=-2 \text { (vertical tangent line) } \\ & x=1,3 \text { (cusps) }\end{aligned}$
[b]

[20] Since the line $x-2 y=6$ (ie. $y=\frac{1}{2} x-3$) is tangent to $y=f(x)$ at $x=4$,
therefore the point of tangency is $\left(4, \frac{1}{2}(4)-3\right)$ or $(4,-1)$.
That means $f(4)=-1$ and $f^{\prime}(4)=\frac{1}{2}$.
Since $f^{\prime}(4)$ exists, therefore f is differentiable at $x=4$ (by the definition of "differentiable").
Since f is differentiable at $x=4$, therefore f is continuous at $x=4$ (by the "differentiability implies continuity" theorem).
Since f is continuous at $x=4$, therefore $\lim _{x \rightarrow 4} f(x)=f(4)=-1$ (by the definition of "continuous at a point").

